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Abstract

The implications of using different control variables for the analysis of moisture
observations in a global atmospheric data assimilation system are investigated. A
moisture analysis based on either mixing ratio or specific humidity is prone to large
extrapolation errors, due to the high variability in space and time of these parameters
and to the difficulties in modeling their error covariances. Using the logarithm of
specific humidity does not alleviate these problems, and has the further disadvantage
that very dry background estimates cannot be effectively corrected by observations.
Relative humidity is a better choice from a statistical point of view, because this field
is spatially and temporally more coherent and error statistics are therefore easier to
obtain. If, however, the analysis is designed to preserve relative humidity in the absence
of moisture observations, then the analyzed specific humidity field depends entirely on
analyzed temperature changes. If the model has a cool bias in the stratosphere this
will lead to an unstable accumulation of excess moisture there.

A pseudo-relative humidity can be defined by scaling the mixing ratio by the back-
ground saturation mixing ratio. A univariate pseudo-relative humidity analysis will
preserve the specific humidity field in the absence of moisture observations. A pseudo-
relative humidity analysis is shown to be equivalent to a mixing ratio analysis with
flow-dependent covariances. In the presence of multivariate (temperature-moisture)
observations it produces analyzed relative humidity values that are nearly identical
to those produced by a relative humidity analysis. Based on a timeseries analysis of
radiosonde observed-minus-background differences it appears to be more justifiable
to neglect specific humidity-temperature correlations (in a univariate pseudo-relative
humidity analysis) than to neglect relative humidity-temperature correlations (in a
univariate relative humidity analysis). A pseudo-relative humidity analysis is easily im-
plemented in an existing moisture analysis system, by simply scaling observed-minus-
background moisture residuals prior to solving the analysis equation, and rescaling the
analyzed increments afterward.



1 Introduction

This paper concerns the choice of control variable for the analysis of moisture
observations in a global atmospheric data assimilation system. Most analy-
sis methods can be formulated in a variational framework as a procedure for
minimizing the distance between model and observations (Courtier 1997). The
choice of variable is important because the notion of ‘distance’ depends on it.
This means that the error covariance models that determine the relative weight-
ing of information in the analysis must be provided for the control variables. In
practical terms, the analysis is essentially a procedure for extrapolating observa-
tional information to the model domain. Some representations of the moisture
field are better suited to this procedure than others.

The question of which variable to use to for atmospheric moisture analysis has
been around for a long time (Atkins 1974, van Maanen 1981). The major nu-
merical weather prediction centers have arrived at different choices during the
development of their assimilation systems. At the time of this writing, relative
humidity is analyzed at the Met Office (Lorenc et al. 2000) and at the Aus-
tralian Bureau of Meteorology Research Centre (P. Steinle, pers. comm.). The
National Centers for Environmental Prediction (Parrish and Derber 1992), the
European Centre for Medium-Range Weather Forecasts (Rabier et al. 1998),
and the Japan Meteorological Agency (K. Onogi, pers. comm.) analyze spe-
cific humidity. The operational system at the Canadian Meteorological Centre
(L. Fillion, pers. comm.) and the newly developed Naval Research Laboratory
Atmospheric Variational Data Assimilation System (Daley and Barker 2001) use
the logarithm of specific humidity. Some of the centers are currently rethink-
ing various aspects of their humidity analysis, including the choice of control
variable.

Here we document some of the considerations that went into the development
of the moisture analysis component of the Physical-space/Finite-volume Data
Assimilation System (fvDAS). This system was recently developed at the Data
Assimilation Office at NASA!’s Goddard Space Flight Center and is expected
to become operational in early 2002. It is based on a finite-volume general
circulation model (Lin and Rood 1996) and uses the Physical-Space Statistical
Analysis System (PSAS) (Cohn et al. 1998). The system obtains information
about atmospheric water vapor content from radiosonde soundings (Garand et
al. 1992), from interactive TOVS? retrievals (Joiner and Rokke 2000), and from
total precipitable water (TPW) estimates derived from SSM/I? data (Wentz
1997). Work is in progress to extract additional humidity information from
radio occultation data transmitted by the Global Positioning System (Poli et
al. 2002). A comprehensive description and evaluation of the fvDAS system will
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be published elsewhere.

The need to carefully consider the choice of moisture variable became partic-
ularly clear to us during the development of the observational quality control
component of the fvDAS. The final phase of the quality control relies on an adap-
tive buddy check algorithm (Dee et al. 2001), which involves the statistical esti-
mation of the expected local variability of the flow. We initially found that the
algorithm did not perform well for moisture observations, because the statisti-
cal estimation applied to mixing ratio observed-minus-background residuals was
not meaningful due to the high variability of the field itself. We then developed
a simple background-dependent transformation for the residuals that effectively
removed this problem. This ultimately led us to use the same transformation
to define a new humidity variable for the fvDAS global analysis system.

The outline of this paper is as follows. After briefly reviewing some back-
ground material, we discuss each of the currently prevalent choices of control
variable: mixing ratio/specific humidity, logarithm of specific humidity, and
relative humidity. Our main concern is with the statistical properties of the
background and observation errors for each choice, as manifested in observed-
minus-background residuals obtained from radiosonde humidity soundings. We
then introduce the variable used in the fvDAS, which we refer to as pseudo-
relative humidity, and discuss the implementation of a change to this variable in
an existing analysis system. We discuss the differences and similarities between
relative humidity and pseudo-relative humidity analyses, and finally present
some preliminary results obtained with the fvDAS to illustrate the impact that
such a change can bring about.

2 Background

The analysis in an atmospheric data assimilation system is constructed by com-
bining a model-generated background estimate with bias-corrected and quality-
controlled observations. If the background estimate is represented by the n-
vector x°, the observations by the p-vector y°, and the mapping from the con-
trol variable to the observations by the vector function h : IR® — IR? , then the
goal is to compute the analysis x® that minimizes

J(x) = (x* —x)TP1(x* - X)

+(y* —hx)"R™'(y° - h(x)), W

where the n x n matrix P and p x p matrix R are the background and obser-
vation error covariances, respectively. In the special case when the observation
operator h is linear, i.e., when h(x) = Hx for some p X n matrix H, the mini-



mizing solution is
x* =x+ PHT [HPHT + R] ' [y° - Hx']. 2)

This expression shows that the change to the background due to the obser-
vations is in the column space of P. The structure of the analysis increment
x% — x° therefore strongly depends on the specification of the background er-
ror covariances. This is true in case of a nonlinear observation operator as well,
and/or if the operator involves integration forward in time as in four-dimensional
variational (4DVAR) assimilation.

To illustrate this general point with a simple example, consider the one-dimen-
sional analysis of a single observation y° of total precipitable water in a vertical
column. Let x = (q1,42,--.,qn)7, where g is the mean specific humidity for a
model layer whose pressure thickness is dp;. The 1 x n observation operator H
is then defined by

1 n
Hx = - " q;0p;, 3)
94
]_..
with g the gravity constant. For simplicity we take a diagonal background error
covariance P = diag(a7,03,...,02). The analyzed specific humidity for layer k
is then
0‘2(5pk
g =q + W =), (4)

where y® = Hx? is the total precipitable water in the background column, and

s? = (0°)% + > i—1 020p?/g* with ¢° the observation error standard deviation.

The vertical structure of the analysis increment g — g} in this case depends only
on the assumed background error variances. If we include vertical correlations
in P then the redistribution of moisture in the column will obviously depend on
them as well.

In practice, background error covariances are not known and must be modeled.
This can be done based on statistical properties of forecast differences (Parrish
and Derber 1992), by means of ensemble methods (Evensen 1994) or by explicit
parameterization (e.g., Riishpjgaard 1998). The usefulness of a covariance model
is not necessarily related to its degree of mathematical sophistication. For ex-
ample, the covariance evolution associated with the Kalman filter involves many
modeling assumptions which are, at best, questionable in the context of atmo-
spheric data assimilation (Dee 1991). A fundamental fact which is still widely
misunderstood is that the ability to estimate error covariances is limited not by
computing power but by a lack of data. For this reason, none of the existing
approaches deals with the model errors (i.e. errorsin the atmospheric prediction
model) in a satisfactory manner.



These issues are especially pertinent to the analysis of atmospheric moisture,
which is strongly affected by mesoscale dynamics and nonlinear physical pro-
cesses that are poorly resolved by general circulation models. Errors in model
predictions of the humidity field can be quite large, involving the deforma-
tion and displacement of synoptic features, and misrepresentation of small-scale
sources and sinks. Most models exhibit systematic errors, such as a tendency
to be consistently dry in certain areas, but these biases vary with season and
location. The usual stochastic assumptions about model errors invoked in data
assimilation (zero-mean, stationary, white noise) evidently do not apply here.

The question we try to address in this paper is therefore primarily a practi-
cal one, concerning the robustness of an analysis scheme in view of inevitable
approximations in the representations of the errors. Specifically, we set out to
choose a moisture analysis variable such that spatially and/or temporally aver-
aged statistics can provide meaningful estimates of the error covariances. We
will also consider whether it is even reasonable to attempt to characterize the
error distributions by the covariances—i.e., whether the distribution is approx-
imately Gaussian. These are basic prerequisites for any attempt to formulate
more advanced flow-dependent covariance models. It will turn out, of course,
that each choice of variable has its drawbacks, and that the most practical so-
lution may depend on the priorities of the center that is operating the data
assimilation system.

3 Mixing ratio and specific humidity

The water vapor content of a given volume of air can be expressed in terms of
the mizing ratio

My
w=—,
mgq

()

where m,, is the mass of water vapor and my the mass of dry air contained in
the volume. The water vapor concentration, or specific humidity is

my
q=—.
my + my

(6)

Since ¢ = w/(1 + w), mixing ratio and specific humidity are equivalent inde-
pendent parameters of the moist atmosphere. Their numerical values are nearly
identical and rarely exceed 20 gkg™!. Peixoto and Qort (1992, Section 12.3)
provide a comprehensive overview of the observed climatology of atmospheric
water vapor. Specific humidity is a prognostic variable in most general circula-
tion models, being conserved in a parcel of air in the absence of condensation
and evaporation.



Figure 1 shows a typical snapshot of the spatial distribution of specific humidity,
taken from a 55-layer 1° x lio fvDAS analysis valid at 0 UTCon 1 J anuary 1998.
The central panel shows the layer-mean specific humidity for the fourth model
layer, which corresponds to approximately 850 hPa over the oceans. The top
panel shows the vertical distribution along the Equator in the lowest eight model
layers, from the surface up to about 500 hPa. The right panel shows the vertical
distribution along the Greenwich Meridian. The field shows a rapid decrease of
magnitude in the vertical direction, and intricate patterns and sharp gradients
in horizontal cross-sections. Maximum values occur at low altitudes and high
temperatures.

[Figure 1 about here.]

We can obtain some information about the mixing ratio background errors by
comparing the background estimates with radiosonde observations. If w° is
a vector of mixing ratio observations and Hw?® the corresponding vector of
interpolated background values, then

w’ — Hw® = e° — He?, (7

where e° = w® —Hw! is the observation error and e® = w® — wt the background
error. Here w' denotes a representation of the true mixing ratio field in the
model state space, so that this definition of the observation error e° includes
what is commonly known as representativeness error (Lorenc 1986).

Equation 7 shows that statistical properties of the residuals w°® — Hw® are di-
rectly related to those of the background and observation errors. Dee (1995) and
Dee and da Silva (1999) exploit this relationship in order to estimate unknown
parameters of the covariance models for both types of errors. In the present
article we are primarily interested in the degree of statistical homogeneity of
the errors, as evidenced by spatially and temporally averaged statistics of the
residuals. We will also examine whether the residuals tend to support a repre-
sentation of the errors by Gaussian distributions with sample statistics based
on time and space averaging.

Figure 2 displays root-mean-square (rms) statistics for mixing ratio residuals
over a one-year period, taken from an fvDAS assimilation. The three main
panels show the rms of the residuals as a function of time and pressure for
stations in the Northern Hemisphere, Tropics, and Southern Hemisphere. The
resolution in time is one day: each data point represents the rms of all available
residuals on that day and at that pressure level. Only residuals associated with
quality-controlled radiosonde humidity reports at mandatory levels up to 300
hPa were processed for these plots.

[Figure 2 about here.]



Not surprisingly, the variability of the residuals reflects that of the humidity field
itself. The solid curves in the leftmost panels of Fig. 2 show, for each region, the
rms of all residuals for the month January (blue) and July (red). They clearly
indicate the large changes of magnitude with altitude, latitude, and season. The
dashed curves in these panels provide an indication of the degree of normality
of the residual distribution. They are obtained by computing, at each pressure
level, the 68th percentile of the residual magnitudes for the ensemble associated
with the corresponding solid curves. The dashed and solid curves should nearly
coincide in case of a Gaussian distribution whose mean and standard deviation
are functions of pressure only, since roughly 68% of an ensemble would then lie
within one standard deviation of the mean.

The extreme variability and changes in scale of the errors and of the field it-
self causes some difficulties when using mixing ratio (or, equivalently, specific
humidity) as the analysis variable for atmospheric moisture. This can be illus-
trated by considering the mixing ratio analysis at wj at model grid location j
obtained from a single observation wy at grid location i, given by

wi = w;’ + kw) — wf], (8)

where w?, w;? are the background estimates at locations %, j, respectively. The
coefficient £ depends on the specification of mixing ratio background and ob-
servation error covariances; compare with (2). In the absence of bias, the best

linear unbiased estimator is obtained when

g )
Pij0;0;

= e ©)

with p;; the correlation between the background errors at locations i and j,
af,og their standard deviations, and o¢ the error standard deviation associ-
ated with the observation. With k # 0, the analysis (8) extrapolates moisture
information from the observation location to nearby grid locations.

The ability to perform meaningful extrapolation of observational information in
the analysis requires that expected changes in magnitude of the errors between
any two locations be accurately represented in the error covariances. Clearly
this is problematic for mixing ratio, in view of the large changes in scale over
short distances in space and time. Large errors can result from locally inaccu-
rate covariance specifications by extrapolating mixing ratio increments across
sharp gradients, especially in the vertical direction. The problem can be made
worse if the analysis scheme contains a mechanism for ensuring non-negative
humidity estimates, since the distribution of the extrapolation errors will then
be asymmetrical, resulting in a tendency to produce excess moisture in the
analysis.

One can attempt to formulate a flow-dependent covariance model in order to
account for the spatial and temporal variability of the humidity field. Rabier et



al. (1998) developed an empirical model for the specific humidity background
error variances, which depends on the background temperature and relative hu-
midity estimates. They also noted a small but significant accumulation of excess
water vapor in the lower stratosphere, found to be due to the inaccurate extrap-
olation of information from upper tropospheric observations. Their solution to
this problem was simply to avoid extrapolation altogether to levels higher than
100 hPa, by setting the error correlations between these and all lower levels to
zero.

4 Logarithm of specific humidity

The discrepancy between the dashed and solid curves in the left panels of Fig. 2
indicates that mixing ratio errors are not well represented by a Gaussian dis-
tribution with monthly statistics. Phrased in more practical terms, this means
that spatially and/or temporally averaged variance estimates may not be very
meaningful as statistics of the mixing ratio errors. It has been argued that it is
more reasonable to assume that the errors follow a lognormal distribution (e.g.,
Daley and Barker 2000), based on the idea that errors in tracer transport are
perhaps more naturally modeled as an accumulation of independent multiplica-
tive, rather than additive, effects (Ott 1995). That would suggest taking the
logarithm of specific humidity s as an analysis variable:

s=logq (10

An important feature of a moisture analysis based on s is that the specific
humidity ¢ = e® in the analyzed state is always positive.

Note that additive errors in s correspond to multiplicative errors in g. It might
seem reasonable to assume that the magnitudes of both background and ob-
servation errors tend to be proportional to the field itself. This would imply
that the rms statistics for observation residuals in s are more homogeneous in
space and time than those in ¢ (or w). Figure 3, which is like Fig. 2 but for
observation residuals s° — Hs®, shows that the spatial variability of the errors
in log g is still considerable, although not quite as large as that of w. However,
the dashed curves in the left panels do not closely match the solid curves, which
suggests that the distribution of the errors is not lognormal.

[Figure 3 about here.]

The use of an analysis variable that has a singularity at ¢ = 0 has a serious
drawback, which can be explained by considering the analysis ¢ of a single
observation ¢f at model grid point i. A linear analysis of log g gives

log¢f =loggq} + k[loggf — logq’] (11)



so that

g = (g2)' " (g?)". (12)

Assuming € < k < 1—e for some € > 0, this means that the analyzed humidity
at a given location will approach zero whenever the background estimate or the
observation at that location is close to zero. Unfortunately it is not unusual
for a model-generated background estimate to be very dry in locations where
the observations indicate that, in fact, the atmosphere is wet. The use of logg
as an analysis variable would result in de facto rejection of all observational
information in such cases. The singularity at ¢ = 0 can be removed by ana-
lyzing log (¢ + q) for some constant ¢ > 0, which would have to be comparable
in magnitude to the humidity field itself. However, this would eliminate the
advantage of a guaranteed non-negative humidity analysis, and it would defeat
any theoretical argument that suggests a lognormal error distribution in the
first place.

5 Relative humidity

The mixing ratio w® of a volume of air which is saturated with water vapor
is called the saturation mizing ratio. This quantity is a known function of
pressure and temperature; see Wallace and Hobbs 1977, Section 2.6, for a precise
definition and further details. Relative humidity is defined by

w
Relative humidity is a useful dynamic parameter for the description of moist
physics in the atmosphere. Its values are affected by all dynamic processes
that result in a change of temperature, such as convection and subsidence, ab-
sorption of radiation, and release of latent heat. Model parameterizations of
cloud formation and the prediction of precipitation are particularly sensitive to
changes in the relative humidity. Peixoto and Oort (1996) survey the climatol-
ogy of relative humidity in the global atmosphere, as derived from radiosonde
observations.

The rms statistics of radiosonde-observed relative humidity residuals (rh)° —
H(rh)® are shown in Fig. 4. Changes in magnitude of the statistics with pres-
sure, latitude, and season are still noticeable but relatively modest. The ap-
parently larger errors at the upper levels in the Tropics are consistent with
the increased uncertainties associated with active convection and moisture di-
vergence below the tropopause. The increased noisiness in the lower panel is
primarily due to sampling; there are relatively few radiosonde stations in the
Southern Hemisphere. The left panels show that the 68th percentiles of the
residual magnitudes match the rms statistics reasonably well in each of the



cases shown. This indicates that a Gaussian distribution is more plausible for
relative humidity errors than for errors in specific humidity or its logarithm.

[Figure 4 about here.]

If the moisture analysis control variable is relative humidity, then either temper-
ature or humidity observations can affect both the analyzed temperature and
specific humidity fields. For example, in the absence of humidity observations,
a single temperature observation T} at model grid point ¢ gives

Tf =T7 + &[T — T}] (14)

(rh)} = (rh); (15)
which implies a change in the mixing ratio at that location:

wf # (16)

by virtue of (13) and the fact that the saturation mixing ratio w® depends on
temperature. Therefore, any change in temperature implied by observations
will cause the water vapor mixing ratio to be adjusted in such a way that the
relative humidity background estimates remain unchanged.

Lorenc et al. (1996) have shown in the context of the Met. Office global data
assimilation system that the preservation of relative humidity in the absence of
humidity observations can be advantageous in certain meteorologically impor-
tant situations, and their work has led to a decision to use relative humidity
for the moisture analysis in their system (Lorenc et al. 2000). The argument is
based on the fact that the cloud parameterizations incorporated in the model
respond primarily to relative humidity. If the model has a tendency to be too
cool, and this tendency is corrected by observations, then it is preferable to
maintain the model’s relative humidity by increasing the specific humidity es-
timates. This was shown to help improve the predicted precipitation in moist,
cyclonic situations in mid-latitudes.

By the same reasoning, however, if the model has a cool bias in the stratosphere
then the warming effect of temperature data will induce a spurious accumulation
of moisture there. In fact, from (13) we have

w¢ ~w! + T (Tf —T) (17)
where
ow?*
I = (rh)- ) 18
WS (18)

If the mean temperature increment (7% — T*) is positive, then (T") will also
be positive and (17) leads to unlimited growth in the assimilation. Strato-
spheric moisture is long-lived, so the only way to counteract this growth is by
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introducing an artificial moisture sink in the stratosphere, e.g. by Newtonian
relaxation to climatology. Even in the absence of model temperature biases, a
slow accumulation of moisture can result from humidity perturbations induced
by zero-mean random temperature forcing, if, as discussed earlier, the analysis
contains a mechanism for ensuring non-negative humidity estimates.

6 Pseudo-relative humidity

We can define a pseudo-relative humidity by

w w

SN

(19)
where T? is the background temperature. The background pseudo-relative hu-
midity and relative humidity fields are, of course, identical:

o= (rh). (20)

T wsh

However, the observed pseudo-relative humidity is not equal to the observed
relative humidity:

o

@0 = —— % (rh)°, (21)

wsb

but rather amounts to a flow-dependent transformation of the observed mixing
ratio.

Pseudo-relative humidity predicts relative humidity fairly well, depending on
the accuracy of the background temperature estimates. The rms error statis-
tics of pseudo-relative humidity and of relative humidity should therefore be
similar. This is supported by Fig. 5, which shows the daily rms statistics for
radiosonde-observed pseudo-relative humidity residuals @°— H@®; compare with
Fig. 4. The pseudo-relative humidity statistics show a slightly larger vertical
gradient, particularly at the highest levels in the Tropics. In all other respects
the similarities are striking.

[Figure 5 about here.]
Given a single observation at location ¢, the pseudo-relative humidity analysis

at location j is

ca _ o=b oo b
= W5 + k[0 -], (22)
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where £ now depends on the covariances for pseudo-relative humidity back-
ground and observation errors:

S ~b-p
Pij0;0;

Gh2 + (57 (23)

[‘% =
Based on the residual statistics shown in Fig. 5, it is not unreasonable to repre-
sent pseudo-relative humidity errors using sample statistics based on time and
space averaging. Homogeneous pseudo-relative humidity errors correspond to
mixing ratio errors that depend primarily on the local saturation mixing ratio
as predicted by the model. In physical terms, the uncertainty is expected to
be large where the atmosphere has a high capacity for water vapor, i.e., at low
levels and high temperatures.

We can show that the analysis of pseudo-relative humidity is equivalent to an
analysis of mixing ratio with flow-dependent covariance models for both back-
ground and observation errors. It is easy to see this for the special case of a
single observation at a model gridpoint, since (22, 23) corresponds to (8,9) with

o} = &jwy’, (24)
o} = twit, (25)
Pij = Pij (26)

confirming that constant 62, &;-’ correspond to mixing ratio error standard devi-

ations o7, crj? that are proportional to the background saturation mixing ratios

wgb wsb

3> respectively.

More generally, consider the variational analysis for mixing ratio w, obtained
by minimizing

J(w) = (wh —w) TP~} (wb — w)

27
+(¥° = h(w))"R™!(y° - h(w)). 27

The pseudo-relative humidity analysis corresponds to a change of variable in
model state space

w=D"'w, D = diag(w*), (28)
and in observation space

y’ = E7ly°, E = diag(h(w*?)). (29)
Accordingly, let

P=D"'PD!, (30)
R=E'REL (31)

12



Linear algebra then shows that (27) can be written

J(W) = (W — %) TP (wh — W)

~ ~ ~ 32
+(F° —h(®)"R7'(F° - h(W)), e

where
h(¥%) = E"'h(DW). (33)

This proves the equivalence between a mixing ratio analysis with covariance
models P, R and a pseudo-relative humidity analysis with covariance models
P,R. The diagonal transformations D, E, which depend on the background
temperature field, generate flow-dependent mixing ratio error covariance models
even when P, R are stationary.

Fig. 6 shows a simple example of the flow-dependent mixing ratio increments
that can occur in a pseudo-relative humidity analysis. We computed the vertical
impact of a moisture observation in case of a background temperature profile
with a lapse rate of 8 K km™! below 220 hPa, and constant temperature above.
Using a scale height H = 7km, we calculated the background saturation mixing
ratio w*® and ‘observed’ the mixing ratio

w = w + ~ws® (34)

at a single pressure level. The value and location of the observation residual
w? —w! is marked by the dotted lines in each panel. We then computed pseudo-
relative humidity increments for this exercise using

% = exp(—20(log(p;/p;))?) | (35)

in (22), which corresponds to a vertically homogeneous and isotropic pseudo-
relative humidity error covariance model. The curves in each of the panels show
the vertical structure of the mixing ratio increments w® — w® associated with
observations at 850, 500, 250, and 200 hPa, respectively. Note the different
scales indicated along the horizontal axes: the increments are proportional to
the saturation mixing ratios, which decrease rapidly with altitude. Background
temperatures are indicated along the vertical axis of the rightmost panel. The
increment in this panel shows the effect of an abrupt change in lapse rate at
the tropopause, whose location is indicated by the gray horizontal bar. For
tropospheric observations the maximum mixing ratio increment generally occurs
slightly below the observation location.

[Figure 6 about here.]
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7 Discussion

A crucial question for the analysis of atmospheric moisture is whether errors
in relative humidity can be considered statistically independent of errors in
temperature. That would justify a univariate relative humidity analysis, which
preserves the relative humidity field in the absence of moisture observations. A
univariate pseudo-relative humidity analysis, on the other hand, would preserve
the specific humidity field in that case. We earlier mentioned the work by Lorenc
et al. (1996), who argue in favor of preserving relative humidities, although
they were specifically concerned with mid-latitude weather prediction and the
performance of their cloud parameterization scheme. We pointed out, however,
that a univariate relative humidity analysis can cause an unstable accumulation
of excess moisture in the stratosphere. This argument has carried considerable
weight at the Data Assimilation Office, where there is a particular emphasis on
stratospheric analysis.

In order to shed some light on the underlying question of multivariate moisture-
temperature error correlations we examined timeseries of simultaneous relative
humidity and temperature observed-minus-background residuals. Using De-
cember 1999 radiosonde reports, we computed the correlation coefficient be-
tween relative humidity and temperature residuals at each station and at each
mandatory level up to 300 hPa. The dashed curves in Fig. 7 show the average
timeseries correlations for all stations with at least 30 complete reports in the
Northern Hemisphere, Tropics, and Southern Hemisphere. We see significant
anti-correlations between the relative humidity and temperature residuals, in-
creasing in magnitude toward the surface. At the lowest levels the correlations
are typically about -0.5.

[Figure 7 about here.]

A recent paper by Franke and Barker (2000) shows very similar results. They
computed the cross-covariances between relative humidity and temperature er-
rors using residuals between radiosonde observations and 6-hour forecasts from
the Naval Operational Global Atmospheric Prediction System (NOGAPS) for
the period March-June 1998. The diagonal elements of the cross-correlation
matrix they obtained (shown in their Fig. 13) correspond to the dashed curves
in our Fig. 7, and are nearly identical if not slightly more negative.

We now turn to the correlations between mixing ratio and temperature residuals,
shown in Fig. 7 (solid curves), again computed from December 1999 radiosonde
data. These are significantly and consistently smaller than the relative humidity-
temperature correlations. As a further check we also calculated spatially (as op-
posed to temporally) averaged cross-correlations on a daily basis, similar to the
computation of the daily rms statistics displayed in Figs. 2-5. The results (not
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shown) are entirely consistent with both sets of curves in F ig. 7. This suggests
that it is more accurate to neglect mixing ratio-temperature error covariances in
analyzing tropospheric moisture than to neglect relative humidity-temperature
€rror covariances.

The moisture analysis is obviously less sensitive to the choice of control variable
when both moisture and temperature are adequately observed. To illustrate,
we show in Fig. 8 the results of a univariate pseudo-relative humidity analysis
of mixing ratio observations, combined with a univariate temperature analysis.
These analyses are valid for the Eastern United States on 1 January 2002 at
0 UTC, and are based on actual 500 hPa radiosonde observations available at
that time. We used homogeneous and isotropic univariate covariance models for
this exercise, with 0® = 20° and a horizontal decorrelation length scale of 300
km for all variables at all locations. The top panel shows the observed-minus-
background mixing ratio residuals with the mixing ratio analysis increments
superimposed, and the center panel shows the observed-minus-background tem-
perature residuals and increments. From these and the temperature background
field we computed the implied relative humidity increments, shown in the bot-
tom panel.

[Figure 8 about here.]

Figure 9 then shows the result of combining a univariate relative humidity anal-
ysis with a univariate temperature analysis, using the same set of radiosonde
reports and the same covariance specifications. The top panel shows the relative
humidity increments, directly computed from the relative humidity observed-
minus-background residuals. The temperature increments were already shown
in the previous figure, and the bottom panel now shows the implied mixing
ratio increments. Figure 10 shows the difference between the relative humidity
increments associated with the two analyses (left panel; this is the difference
between the bottom panel of Fig. 8 and the top panel of Fig. 9) and the dif-
ference between the mixing ratio increments associated with the two analyses
(right panel; this is the difference between the top panel of Fig. 8 and the bot-
tom panel of Fig. 9). We see that the relative humidity increments are equal to
within 3% in most places. The differences between the mixing ratio increments
increase with the temperature gradient South of Florida.

[Figure 9 about here.]

[Figure 10 about here.]

15



8 Implementation

It is straightforward to implement a change of variable to pseudo-relative hu-
midity in an existing variational analysis system. For convenience we assume
that the original control variable is mixing ratio, although the same procedure
can be applied if the existing system is based on some other variable, simply by
redefining the diagonal transformations D and E. Writing the analysis equa-
tion (32) for pseudo-relative humidity as

J(W) = (W — %) TP 1 (wb - W) (36)
- 0 T4 - o
+[E7N(y° ~h(w))]" R [E7'(y* — h(w))],
suggests the following implementation:

1. Compute w** and h(w*®) from the background state;
2. Compute the scaled residuals E~!(y° — h(w));

3. Solve the variational problem with covariance models f’, R and observa-
tion operator h;

4. Compute the mixing ratio increment w® — w® = D(W® — w?).

In the linear case the solution procedure is expressed by

w? = w’ + DKE ! (y° — Hw?), (37)
with

K =PAT [APA" + R . (38)

The change of variable can be regarded as a preconditioner for the variational
analysis equation (Lorenc 1988), and it may improve the convergence proper-
ties of an iterative solver since the error covariance models for pseudo-relative
humidity should be better conditioned than those for mixing ratio.

The modified observation operator h as defined by (33) involves multiplying and
dividing by background saturation mixing ratios. For some data types it may be
more practical, and possibly more accurate, to ignore (33) and reformulate the
observation operator directly in terms of pseudo-relative humidity. For example,
in case of radiosonde observations

h(w) = Hw, (39)

where H now represents spatial interpolation from the model state to the ob-
servation locations. In this case ‘

h(w) = Hw (40)
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is preferable over (33), since the pseudo-relative humidity field is smoother than
the mixing ratio field and therefore lends itself better to spatial interpolation.

9 fvDAS results

We briefly summarize some initial results obtained with the pseudo-relative hu-
midity analysis incorporated in the fvDAS. Figure 11 shows bar plots of rms
mixing ratio background errors for three separate experiments. Errors are com-
puted with respect to January 1998 radiosonde mixing ratio observations at
1000, 850, 700, 500, and 300hPa, separately for the Northern Hemisphere,
Tropics, and Southern Hemisphere. The top bar (red) in each panel corre-
sponds to a control experiment in which mixing ratio was the analysis variable,
and the only source of moisture data consisted of radiosonde observations. The
blue bar shows the positive impact on the mixing ratio errors of changing to a
pseudo-relative humidity analysis, still analyzing radiosonde observations only.
The green bar adds the impact of interactive TOVS humidity retrievals (Joiner
and Rokke 2000) to the pseudo-relative humidity analysis.

These results show that the change of variable from mixing ratio to pseudo-
relative humidity produces a small but not insignificant decrease of rms back-
ground errors at all levels. It is encouraging that the introduction of TOVS
moisture information further improves the fit to radiosonde observations.

We did not perform model bias correction (Dee and Todling 2000) for this study,
nor did we make an effort to optimize the error covariance models for any of
the experiments. In each case we specified background and observation error
standard deviations and isotropic background error correlations, as discussed in
Dee and Todling (2000), such that the relative weight of an observation at its
location (k in (9) with i=3) is a function of pressure only. The mixing ratio
and pseudo-relative humidity analyses therefore produce essentially identical re-
sults at the observation locations, but extrapolate the observational information
differently, as illustrated by the example in Fig. 6.

[Figure 11 about here.]

10 Conclusion

We reviewed several commonly used choices of control variable for the moisture
analysis in atmospheric data assimilation. For water vapor mixing ratio and
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specific humidity, error covariance modeling is complicated by the high variabil-
ity in space and time of the errors and of the field itself. Inaccurate covariance
specifications for these variables can cause extrapolation errors in the analysis
which are large compared to the local field values. Furthermore, characteri-
zation of the estimation errors in terms of their second moments is not very
meaningful, since the error distributions are far from Gaussian. These remarks
apply to the logarithm of specific humidity as well, which suffers from the ad-
ditional drawback that dry background estimates are not corrected well by wet
observations.

Relative humidity is a better choice from a statistical point of view, in the sense
described above. The relative humidity field is more coherent in space and
time, and therefore lends itself better to extrapolation. Since relative humidity
depends on temperature, its use as an analysis variable implies that tempera-
ture observations directly affect the specific humidity field. We found that this
can result in an unrealistic and unstable accumulation of moisture in the strato-
sphere in the presence of temperature model biases. Fundamentally, a univariate
relative humidity analysis involves the assumption that relative humidity errors
and temperature errors are statistically independent. However, radiosonde sta-
tion timeseries of observed-minus-background residuals show a significant nega-
tive correlation between relative humidity residuals and temperature residuals.
Correlations between specific humidity residuals and temperature residuals are
generally much smaller in magnitude.

We defined a pseudo-relative humidity by scaling the mixing ratio by the satu-
ration mixing ratio of the background field. Pseudo-relative humidity is a good
predictor of relative humidity, depending on the accuracy of the background
temperature estimates. Its statistical properties are therefore similar to those
of relative humidity. However, in the absence of moisture observations a univari-
ate pseudo-relative humidity analysis preserves the background specific humidity
field, and this prevents stability problems with the stratospheric moisture anal-
ysis. A pseudo-relative humidity analysis is equivalent to a mixing ratio analysis
with flow-dependent error covariance specifications. It is easily implemented in
an existing analysis system by scaling the observed-minus-background residuals
prior to solving the analysis equation, and then converting the pseudo-relative
humidity analysis increments back to the original humidity variable. Early re-
sults with the fvDAS, obtained with extremely simple error covariance models,
indicate that this change of variable can lead to a better fit of the background
humidity estimates to radiosonde observations.

The nature of the work reported here is primarily practical, in recognition of
the fact that actual errors in operational data assimilation systems are not well
represented by the covariance specifications. It is important to consider the ro-
bustness of algorithmic design decisions to this practical reality. In particular,
the control variable should be such that time- and space averaging of the errors
gives meaningful results, so that approximate covariance models based on statis-
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tical averages do present some useful information about local errors. An optimal
moisture analysis scheme would require multivariate moisture-temperature er-
ror covariance specifications, but we have not pursued this beyond the blunt
statement that it appears to be more justifiable to neglect specific humidity-
temperature correlations (in a univariate pseudo-relative humidity analysis)
than to neglect relative humidity-temperature correlations (in a univariate rel-
ative humidity analysis).

With this as a starting point, however, we feel it may be feasible to improve
the description of humidity errors by modeling the three main dynamic effects
on the background error covariances in the assimilation cycle: (1) advection of
initial errors, (2) error growth due to model defects, and (3) error reduction due
to the incorporation of observations. This would represent a simplification of
the Kalman filter equations following ideas outlined in earlier work (Dee 1990,
1991). We have begun to implement simple representations of each of these
effects in the fvDAS, in order to cycle the moisture background error covariance
specifications. We plan to present the results of initial assimilation experiments
with this scheme in a separate article.
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List of Figures

Specific humidity distribution at 0 UTC, January 1, 1998, produced by
the fvDAS on a 55-layer 1° x 1%0 latitude-longitude grid. The larger of
the three panels shows the layer-mean specific humidity for the fourth
model layer, where most of the water vapor tends to be concentrated
(at approximately 850 hPa over the oceans). The top panel shows
the vertical distribution along the Equator in the lowest eight model
layers, from the surface up to about 500 hPa. The right panel shows
the vertical distribution along the Greenwich Meridian. . . . . . . . .

Daily rms statistics of radiosonde observed-minus-background mixing
ratio residuals during the period 1 November 1999 — 31 October 2000,
produced by the fvDAS. The three shaded contour plots show the rms
of the residuals as a function of time and pressure for the Northern
Hemisphere, Tropics, and Southern Hemisphere. The color scale is
indicated on the right; units are g kg™!. The panels to the left of each
contour plot show the rms of all residuals for the month January 2000
(blue solid curve) and July 2000 (red solid curve), and the correspond-
ing 68th percentiles (dashed curves) of the residual magnitudes.

As Fig. 2, but for log g residuals. Units are non-dimensional. . . . . .
As Fig. 2, but for rh residuals. Units are in percents. . . . . .. . ..
As Fig. 2, but for w residuals. Units are non-dimensional. . . . . . .

Mixing ratio analysis increments in a vertical column due to a single
observation at 850, 500, 250, and 200 hPa, respectively, assuming ver-
tically homogeneous and isotropic (in log p) pseudo-relative humidity
error covariances. Saturation mixing ratios are computed based on
a temperature profile with a lapse rate of 8 K km™! below 220 hPa,
and constant temperature above. Temperature values are indicated
along the vertical axis of the rightmost panel. The dotted lines in each
panel mark the location and the value of the mixing ratio observation
residual. . . ..o

Average timeseries correlations for mixing ratio and temperature dif-
ferences (solid) and for relative humidity and temperature differences
(dashed), computed from December 1999 quality-controlled radiosonde
observed-minus-forecast residuals. The correlations were computed for
each station at each mandatory level from the residual timeseries, and
then averaged over all stations in the Northern Hemisphere, Tropics,
and Southern Hemisphere. . . . . ... ... .. ... .. . . . .
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Top panel: Mixing ratio observed-minus-background residuals (solid
disks) and analysis increments (contours) obtained with a univariate
pseudo-relative humidity analysis, for the eastern United States on
1 January 2002 at 0 UTC. Center panel: Temperature residuals and
analysis increments. Bottom panel: Implied relative-humidity analysis
increments. The contour interval for each panel is indicated along the
left axis; blue/red shades represent negative/positive values, and the
shading of the disks is consistent with that of the contours. . . . . .

Top panel: Relative humidity observed-minus-background residuals
(solid disks) and analysis increments (contours) obtained with a uni-
variate relative humidity analysis, for the same region and time as
Fig. 8. Bottom panel: Implied mixing ratio analysis increments. Color
shading is identical with Fig. 8. . . . .. . ... ... .. .. . .. .

Top panel: Difference between the relative-humidity increments shown
in the top panel of Fig. 8 and the implied relative-humidity analysis
increments shown in the bottom panel of Fig. 9. Bottom panel: Dif-
ference between the implied mixing ratio analysis increments shown in
the bottom panel of Fig. 8 and the mixing ratio analysis increments

shown in the top panel of Fig. 9. Color shading is identical with Fig. 8.

Root-mean-square mixing ratio background errors for the three ex-
periments discussed in the text. Errors are calculated with respect
to radiosonde mixing ratio observations in the Northern Hemisphere,
Tropics, and Southern Hemisphere, at 1000, 850, 700, 500, and 300
hPa. The units along the horizontal axes are gkg™*. . . . ... ...
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Specific Humidity Distribution at the Greenwich Meridian

500hPa

GEERREREE

Surface

Specific Humidity Distribution at the Equator

Figure 1: Specific humidity distribution at 0 UTC, January 1, 1998, produced by the
fvDAS on a 55-layer 1° x 1{’ latitude-longitude grid. The larger of the three panels
shows the layer-mean specific humidity for the fourth model layer, where most of the
water vapor tends to be concentrated (at approximately 850 hPa over the oceans).
The top panel shows the vertical distribution along the Equator in the lowest eight
model layers, from the surface up to about 500 hPa. The right panel shows the vertical
distribution along the Greenwich Meridian.
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Figure 2: Daily rms statistics of radiosonde observed-minus-background mixing ratio
residuals during the period 1 November 1999 — 31 October 2000, produced by the
fvDAS. The three shaded contour plots show the rms of the residuals as a function of
time and pressure for the Northern Hemisphere, Tropics, and Southern Hemisphere.
The color scale is indicated on the right; units are gkg™!. The panels to the left of
each contour plot show the rms of all residuals for the month January 2000 (blue solid
curve) and July 2000 (red solid curve), and the corresponding 68th percentiles (dashed
curves) of the residual magnitudes.
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Figure 6: Mixing ratio analysis increments in a vertical column due to a single obser-
vation at 850, 500, 250, and 200 hPa, respectively, assuming vertically homogeneous
and isotropic (in logp) pseudo-relative humidity error covariances. Saturation mix-
ing ratios are computed based on a temperature profile with a lapse rate of 8 K km™!
below 220 hPa, and constant temperature above. Temperature values are indicated
along the vertical axis of the rightmost panel. The dotted lines in each panel mark
the location and the value of the mixing ratio observation residual.
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Figure 7: Average timeseries correlations for mixing ratio and temperature differences
(solid) and for relative humidity and temperature differences (dashed), computed from
December 1999 quality-controlled radiosonde observed-minus-forecast residuals. The
correlations were computed for each station at each mandatory level from the residual
timeseries, and then averaged over all stations in the Northern Hemisphere, Tropics,

and Southern Hemisphere.
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Contour interval is 3%

Contour interval is 0.05 g/kg

Figure 9: Top panel: Relative humidity observed-minus-background residuals (solid
disks) and analysis increments (contours) obtained with a univariate relative humidity
analysis, for the same region and time as Fig. 8. Bottom panel: Implied mixing ratio
analysis increments. Color shading is identical with Fig. 8.
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Figure 10: Top panel: Difference between the relative-humidity increments shown in
the top panel of Fig. 8 and the implied relative-humidity analysis increments shown
in the bottom panel of Fig. 9. Bottom panel: Difference between the implied mixing
ratio analysis increments shown in the bottom panel of Fig. 8 and the mixing ratio
analysis increments shown in the top panel of Fig. 9. Color shading is identical with
Fig. 8.
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Figure 11: Root-mean-square mixing ratio background errors for the three experi-
ments discussed in the text. Errors are calculated with respect to radiosonde mixing
ratio observations in the Northern Hemisphere, Tropics, and Southern Hemisphere, at
1000, 850, 700, 500, and 300 hPa. The units along the horizontal axes are gkg .
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